Unidad Ill: Componentes y librerias

3.1. Definicién conceptual de componentes,
paguetes/librerias

Componente: Es una clase abstracta que representa todo lo que tiene una

posicion, un tamafio, puede ser pintado en pantalla y puede recibir eventos.

LIBRERIAS

La utilizacion de objetos dinamicos supone dejar pendiente en el montaje de la
aplicacion el enlace de dichos objetos. Cuando la aplicacion esta en ejecucion, y
sélo entonces, se produce el enlace (dinamico) con los objetos contenidos en la
libreria.

La creacion de librerias dinamicas corre a cargo del enlazador o montador (en
nuestro caso el Id) aunque también es posible indicar al compilador las opciones
necesarias para el montaje y de ese modo, sera él quien se encargue de
pasarselas al montador.

Cuando se crea un objeto dinamico es necesario que dicho codigo objeto sea
independiente de la posicion, para conseguir este tipo de codigo debe
especificarse al compilador la opcion -fPIC (Position IndependentCode). Dicho flag
debe indicarse tanto en la compilacion como en el montaje de la libreria.

Para montar los objetos es necesario ademas indicar la opcién -shared para que el

resultado sea un fichero objeto ‘compartible’.

3.2. Uso de componentes (visuales y no visuales)
proporcionados por el lenguaje

Un componente desde el punto de vista de programacién esta compuesto por
varias secciones y el conjunto de todas ellas dan lugar a la creacion de
dichocomponente.

Por tanto, primero para no perder el norte, vamos a empezar definiendo

elconvenio que es utilizado para organizar dichas secciones por TinyOs. En



general, uncomponente posee tres grandes secciones que son: Configuration,
Implementation,Modul e. Estas tres secciones han de estar obligatoriamente
presentes en cualquiercomponente aunque puedan estar vacias.

El estandar de T iny O s determina, que las secciones de Configuration
elmplementatiéon han de ir en un fichero que recibira el nombre del componente
con laextension .nc y la tercera seccion de Module debera de ir en otro fichero
aparte querecibira el nombre del componente concatenado con un M
mayuscula (la M da elsignificado al fichero, es el significado de Module) , este
altimo fichero también poseeraa extension .nc.

Otra buena costumbre consiste en crear un fichero de header o cabecera con
extension .h que contenga todas las enumeraciones, registros o tipos de datos
creadospor el usuario de los que hace uso la aplicacion, y cuando se realiza esto
la forma deligar dicho fichero con los otros dos es utilizando al principio de los
otros fichero ladirectiva includesheader; aunque como mencion especial decir
que si nos fijamosmejor en este directiva se puede ver que no se incorpora la
extension .h en la misma.

Ahora que ya sabes cuales son las secciones que va a contener cada
ficherovamos a empezar a explicar cada una de ellas.

ImplementationEsta seccion se va a encargar de definir las conexiones que
hay entre losdiferentes componentes que utiliza la aplicacion, esto es debido a
que si recordamos unpoco, se ha comentado que la programacion de un
componente (que se llevara a cabo en la seccién de module) se hace utilizando
interfaces y dichas interfaces para poderutilizarlas las ha de proporcionar un
componente, entonces basicamente es esta seccionse definen cuales son los
componentes que proporcionan las interfaces a nuestraaplicacion (por lo
general seran componentes primitivos).

Una vez que conocemos la finalidad de esta seccidny llegados a este punto,
vamos a insertar un concepto nuevo que es la diferencia que existe entre una
aplicacibnque esta ya disponible para ser ejecutada en un sensor y un
componente cualquiera. Ladiferencia es muy poca, y consiste en que una

aplicacion es un componente comocualquier cosa en este lenguaje que en su



seccion de implementacion hace uso de uncomponente especial denominado

Main.

3.3. Uso de librerias proporcionadas por el lenguaje

Java es un lenguaje de programacion desarrollado para una multitud de
plataformas y procesadores.

Consideremos los dos tipos de aplicaciones graficas mas comunes.

Modelos de Frames y Applets, se pueden construir usando cualquiera de las dos
galerias de componentes visuales, son:

JAVA AWT: Es la libreria visual mas antigua de java usando esta libreria, se
podran construir los tres tipos de programas mas comunes como son FRAME,
WINDOW y APPLET.

JAVA SWING: Es la libreria de componentes visuales mas nueva que proporciona
java, usando esta libreria se podran construir los tres tipos de programas o
aplicaciones que son JFRAME, WINDOW Y JAPPLET.

Un applet es un programa en java que se mandan a una maquina o PC remota
para que los ejecuten o lo corra, cuando este applet de llegada a las maquinas
remotas via browser, dicho browser es quien activa la maquina virtual de java que

da la orden de compilacion y ejecucion, es decir java programa.applet.
Entonces es importante que la maquina virtual de java, que se encuentra en la PC
remota,tenga capacidad de incluir todas las librerias de java, como la de match, la

de AWT, la de lang.etc.

Existen diferentes librerias en java, entre las cuales se encuentra.

Java. lang



Coleccion de tipo basico siempre importados a cualquier unidad de compilacién.
Aqui estén las declaraciones de objetos, clases, wrappers.

Interfaces Clases.
Cloneables Boolean
Comparable Byte
Runnable Character
ClassLoader
Compiler

Double

Float
InheritableThreadLocal
Interger

Long

Math

Number

Object

System

Thread

VoidString, etc...

Java.io

Archivos de stream y acceso aleatorio. Libreria estandar de entrada y salida.
Interfaces Clases

DatalnputBufferedinputStream

DataOutputBufferedOutputStream

ExternalizableBufferedReader

FilefilterBufferedwrite



FilenameFilterByteArraylnputStream
OdjectinputByteArrayOutputStream
SerializableDataOutputStream

File

InputStream reader

Writer,etc..

Java.net

Libreria que apoya interfaces con telnet y URL.

Interfaces Clases

ContentHandlerFactory Authenticator
DatagramSocketimplFactoryContentHandler
FileNameMapDatagramPacket
SocketOptionsDatagramSocketimpl
URLStreamHanlerFactoryHttpURKConnection URL, etc..

Java.util
Clase como de diccionarios, tabla de hash, stack, técnica de codificacion hora,
fecha, etc.

Interfaces Clases

Collection AdstractCollection
Comparator AdstracList

Enumeration AdstrectMap
EventListenerAdstrectSecquentialList

InteratorAdstractSet



List ArreyList
Observer Collection
SortedSetEventObject
Random Stack

Timer

Vector

Date,etc.

Java.Awt

AbstractWindowingToolkit que proporciona una capa abstracta que permita llevar
una aplicacion en java de un sistema de ventanas a otro. Contiene clases para
componentes basicos de la interfaz, tales como eventos, colores, tipos de letra,

botones, campos de texto.

Estructura del awt.
La estructura de la versién actual del AWT en la plataforma Java 2 se puede

resumir en los puntos siguientes:

Los contenedores contienen componentes, que son los controladores basicos.

No se usan posiciones fijas de los componentes, si no estan situados a traves de
una disposicion controlado (layouts)

El comun denominador de mas bajo nivel se acerca al teclado, ratbn y manejo de
eventos.

Alto nivel de abstraccion respecto al entorno de ventanas en que se ejecute la
aplicacién (no hay areas clientes, ni llamadas a X ).

La arquitectura de la aplicacion es dependiente del entorno de ventanas, en vez

de tener un tamaifio fijo.



Carece de un formato de recursos. No se puede separar el codigo de lo que es
propiamente interfaz. No hay ningun disefiador de interfaz toda via.

Interfaces Clases

ActiveEventAlphaComposite

AdjustableAWTEvent

Java.applet

El paquete java.applet permite la creacion de appletsatraves de la clase Applet,
proporciona interfaces para conectar un applet a un documento web y para
audicion de audio.

Interfaces Clases

AppletContext Applet

AppletStub

AudiClip

Java.math

Proporciona célculos en entero grande y real grande.
Clases

Bigdecimal

Biginteger

Ademas de la clase Math.

Esta es la clase que representa la libreria matematica de Java. Las funciones que
contiene son las de todos los lenguajes, parece que se han metido en una clase
solamente a propdsito de agrupacion, por eso se encapsulan en Math, y lo mismo
sucede con las demas clases que corresponde a objetos que tiene un tipo

equivalente (caréacter, Float, etc.)



La clase Math es public para que se pueda llamar desde cualquier sitio y static

para que no haya que iniciarla.

Java.rmi

Este paquete hace posible que un objeto se ejecute en una maquina virtual Java
invoque métodos de otro objeto que se ejecuta en la maquina virtual distinta; dicha
maquina virtual pueden encontrarse en ordenadores diferentes conectados a
través de una red TCP/IP.

Interfaces Clases
RmoteMarshalledObject
Naming
RMISecurityManager

Java.text

Contiene clase que permiten dar formato especializado a fechas, numeros y
mensajes.

Interfaces Clases

AttributedChacterlterator Annotation
CharacterlteratorAttibutedCharacterlterator
ChoceFormat

DateFormat

Format

MessageFormat

NumberFormat

ParsePosition



Java.sound.midi

Paquete con clase e interfaces que permitan la captura, procesamiento y
reproduccion de musica MIDI.

Interfaces Clases

ControllerEventListener Instrument

MataEventListenerMeteMessage

MidiChannel MidiDevice.info

MidiDeviceMidiEvent

Receiver MidiFileFormat

SequecerMidemessage

JAVA .SQL

Junto con el paquete javax.sql, incluido en java 2 SDK Edicién para la empresa,
forma parte del API de java 2.0 (conexién Java a Base de Datos), y permite la
conexion de base de datos, el envié de sentencias SQL y la interpretacion de los

resultados de las consultas.

IntefacesClases

Array Date

Blob DriverManager
CallabeStatementDriverPropertylnfo
ClobSQLPermission

Connecction Timer
DatabaseMetaDate Timestamp
Driver Type

Ref

SQLData



SQLInput
SQLOutput
Struct

JAVA.SWING

Paquete que mejora e AWT, proporcionando un conjunto de componentes que se
ejecutan de manera uniforme en todas las plataformas.
Interfaces Clases

Action AbstractAction

ComboBoxEditorActonMap

Icon Box.Filler

ListModelCellRendererPane
MenuElementDebugGraphics
WindowsConstantsDefaulListSelectionModel

JApplet

Jbutton

JCheckBox

JFrameJMenu

JLabel

JPanel

JTextField

JTree

Jwindows

Temer

UlManager



3.4. Creacion de componentes (visuales y no visuales)
definidos por el usuario 3.5. Creaciéon y uso de
paquetes/librerias definidas por el usuario

Se puede establecer muchas clasificaciones para los componentes. Una de ellas
es la de visuales o controles, frente a no visuales.

Un componente es visual cuando tiene una representacion grafica en tiempo de
disefio y ejecucion (botones, barras de scroll, cuadros de edicion, etc.), y se dice
no visual en caso contrario (temporizadores, cuadros de dialogo-no visibles en la
fase de disefio, etc). Por lo deméas no existen més diferencias entre ellos, excepto,
claro esta, las derivadas de la visualizacion del componente.

Los componentes no visuales se pueden colocar en los formularios de la misma
manera que los controles, aunque en este caso su posicion es irrelevante.

Para empezar, los componentes visuales podemos dividirlos a su vez en dos tipos:
-Componentes interactivos: permiten que el usuario final los manipule, ya sea
introduciendo datos, seleccionado elementos, etc. De forma que estos
componentes pueden recibir el foco (con SetFocus) asi como los eventos propios
del teclado y del raton. Normalmente, el propio sistema operativo es el encargado
de dibujar el aspecto del componente, haciendo el componente las llamadas

correspondientes para que este aspecto cambie.

-Componente gréficos: el propio componente es el encargado de dibujar en la
pantalla lo que crea oportuno, bien a través de las funciones basicas del API de
Windows (con el objeto TCanvas) o bien a través de otras librerias graficas, como
OpenGL, DirectX, etc. Estos componentes, no suelen recibir eventos del usuario
final, aunque si eventos del propio programador, ya que su cometido no suele ir
mas alla de mostrar ciertos graficos o imagenes en la pantalla.

Si tuviéramos que crear un componente interactivo desde el principio, seria
demasiado complejo, ya que tendriamos que luchar encontrar el propio API del
sistema operativo, gestionando sus mensajes, las llamadas las funciones a bajo

nivel, etc. Sin embargo, podemos aprovechar la mayoria del trabajo hecho por



Borland en la VCL, y crear componentes interactivos a partir de otros ya

existentes, aplicado la técnica de herencia.



